Stellar Variability and Flare Rates from Dome A, Antarctica, Using 2009 and 2010 CSTAR Observations

Oelkers, Ryan J. et al., 2016, The Astronomical Journal, 151, 166 | View on ADS (2016AJ....151..166O) | Access via DOI


The Chinese Small Telescope Array (CSTAR) carried out high-cadence time-series observations of ̃20.1 square degrees centered on the South Celestial Pole during the 2008, 2009, and 2010 winter seasons from Dome A in Antarctica. The nearly continuous six months of dark conditions during each observing season allowed for \gt {10}6 images to be collected through gri and clear filters, resulting in the detection of \gt {10}4 sources over the course of three years of operation. The nearly space-like conditions in the Antarctic plateau are an ideal testbed for the suitability of very small-aperture (\lt 20 cm) telescopes to detect transient events, variable stars, and stellar flares. We present the results of a robust search for such objects using difference image analysis of the data obtained during the 2009 and 2010 winter seasons. While no transients were found, we detected 29 flaring events and find a normalized flaring rate of 5 ± 4 × 10-7 flare hr-1 for late-K dwarfs, 1 ± 1 × 10-6 flare hr-1 for M dwarfs and 7 ± 1 × 10-7 flare hr-1 for all other stars in our sample. We suggest future small-aperture telescopes planned for deployment at Dome A would benefit from a tracking mechanism, to help alleviate effects from ghosting, and a finer pixel scale, to increase the telescope's sensitivity to faint objects. We find that the light curves of non-transient sources have excellent photometric qualities once corrected for systematics, and are limited only by photon noise and atmospheric scintillation.

11 total citations Correct as at 28 Nov, 2021

Citations by month:
Statistics correct as at 27 Nov, 2021