A project for a **New Generation Infrared Sky Survey (NGISS)** with a **Polar Large Telescope (PLT)**

[Isabelle Vauglin, Maud Langlois (CRAL, Observatoire de Lyon, France), Gil Moretto (LIO/IPNL), Nicolas Epchtein (Lagrange)] for the PLT Consortium
Why do we need a new generation large scale (all-sky?) NIR survey?
Preparation, accompanying and following-up ELT IR key-programs

- 2MASS not deep enough, a NGISS should supersede VISTA (sky coverage, sensitivity, angular resolution, spectral range)
- NGISS coverage: 5 to 15,000 square degrees (Southern Sky)
- High sensitivity: gain ~ 1000 with respect to 2MASS at K
- High contrast → off-axis telescope proposed (see below)
- High angular resolution: 0.3” or better (thanks to site + GLAO)
- Extend spectral coverage beyond 2.3 μm (in particular the K_{dark} and L windows); bridging ground/space surveys (WISE, Spitzer, …)
Guidelines for a new broad band near IR survey

- Faster than VISTA @K by a factor > 10 or more
- Better angular resolution than VISTA (∼ 0.3 ” vs. 0.5”)
- Large Fields (comparable to VISTA’s). All sky (?)
- Repeated (time domain exploration) (LSST-style)
- Near thermal infrared (2.2 to 4.5 µm)
- Uninterrupted (day/night) observations beyond 3µm
- Possible imaging-spectroscopic mode in the 2.3-5 µm range?
- Provide lists of very faint exciting sources (transients, large z, candidate exoplanets…) for E-ELT, JWST… alerts
- Follow up large space surveys EUCLID, WFIRST
Top Science drivers that will take benefit from a NGISS

- **Distant Universe**
 - Early Universe: high redshift galaxies, probing epoch of reionization, Pop. III stars, H$_2$
 - SN-Ia in dusty galaxies (survey and light curve follow-up)

- **Extragalactic stellar populations**
 - Synoptic time monitoring of Magellanic Stellar populations (extension of VMC- deeper- $\lambda > 2.3 \, \mu m$)

- **Low mass stars, exoplanets and small bodies of the Solar System**
 - Stellar: extreme brown dwarfs/free floating planets (field and SFR)
 - Small bodies of the Solar System (complementary to LSST)
The expected sensitivity of NGISS compared to other surveys
Antarctica, an attractive site for infrared imaging survey
ANTARCTIC PLATEAU DOME C

A MUST FOR ASTRONOMICAL OBSERVATIONS

HIGH ALTITUDE & CALM WINDS
Dome C is at 3,202m and one of the least windy.

CLEAR & STABLE SKIES
The only turbulence at Dome C is close to the ground!

LOW TEMPERATURES
At -50°C to -90°C for Dome C, one of the coldest places on Earth

DRY & CLEAN
Low Precipitable Water Vapor (PWV) and Reduced Particulate Content

TRANSPARENT, STABLE, COLD, DRY & CLEAN
LOW THERMAL BACKGROUND
LOW SKY BRIGHTNESS

Sources: Andrew J. Monaghan (wind speed); Mark R. Swain and Hubert Gallée (turbulence); Australian Antarctic Division (temperature); Publications of the Astronomical Society of the Pacific; University of New South Wales
The Concordia station at Dome C (2011) operated by IPEV and PNRA (ENEA)

- Main buildings
- Astronomy area
- Site testing instruments (Concordiastro)
- IRAIT
- German Dome
- ASTEP
- cochise

- 75°06' South, 123°23' East
- Altitude 3220 m
- 1100 km inside the continent
Concordia DOME C SITE QUALITY at a GLANCE

WINTER:
Turbulent boundary layer = 23m
Above that seeing ~ 0.3"

<table>
<thead>
<tr>
<th></th>
<th>Seeing</th>
<th>Isop.</th>
<th>Coh. time</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIMM/GSM</td>
<td>0.4"</td>
<td>4.1"</td>
<td></td>
</tr>
<tr>
<td>SSS</td>
<td>0.3"</td>
<td>6.9"</td>
<td>10.2 ms</td>
</tr>
<tr>
<td>Balloons</td>
<td>0.4"</td>
<td>2.7"</td>
<td>6.8 ms</td>
</tr>
<tr>
<td>AASTINO 2004</td>
<td>0.3"</td>
<td>5.7"</td>
<td>7.9 ms</td>
</tr>
<tr>
<td>Simulations</td>
<td>0.3"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mauna Kea | 0.6" | 1.9" | 2.7 ms
Paranal | 0.8" | 2.6" | 3.3 ms

SUMMER @ 8m:
seeing ~ 0.4"

Most appropriate spectral domain for NGISS

Better sky atmospheric transmission
First Astrophysical results obtained at Concordia: ASTEP (2011) IRAIT in 2013 (talk by M. Dolci)

WASP-19b Transit Lightcurve

from Abe et al., 2012, subm. A&A
ASTEP400 Results

- **Occulation ("secondary eclipse") of WASP-19b** (Abe et al., A&A 2013)
 - First ground-based observation of an occultation in this wavelength range (~R band)
 - 24 observing nights (May 2010), 14h/day

- **Planet candidates:**
 - 2010 & 2011 data fully processed (paper in preparation)
 - ongoing Radial Velocity (ANU, Australia – HARPS, Chile) and spectroscopic characterization.
 - Detection sensitivity: 1% up to R~16

- **ASTEP will not be operated in 2014**
 - Fix of hardware malfunction.
 - Summer campaign dedicated to fix software issues

- **Plans for 2015 and beyond:**
 - Propose an ASTEP+ version:
 - Instrument located @10m height (on top of a concrete pillar + wooden platform).
 - Possibility to add photometric filters(?)
 - Higher angular resolution: denser fields with better PSF stability (e.g. galactic center)
 - Collaboration with IRAIT for IR characterization of transits? (but field is very small)
Thence, road is free to devise bigger instruments and more ambitious projects

vision 2010-2020......
NGISS (2.5 m) performances
(from Epchtein et al. 2013, in preparation)

<table>
<thead>
<tr>
<th>Array type</th>
<th>HgCdTe HAWAII 4RG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array size</td>
<td>4k x 4k</td>
</tr>
<tr>
<td>FPA configuration</td>
<td>16 chips buttable end to end</td>
</tr>
<tr>
<td>Pixel size</td>
<td>10 (\mu m)</td>
</tr>
<tr>
<td>Pixel scale</td>
<td>(\leq 0.15'')</td>
</tr>
<tr>
<td>Final PSF FWHM</td>
<td>0.3''</td>
</tr>
<tr>
<td>Field of view of the camera</td>
<td>40' x 40'</td>
</tr>
<tr>
<td>Filter set (3 minimal)</td>
<td>(K_d, L_s, L')</td>
</tr>
<tr>
<td>Possible additional filters</td>
<td>K, K_s, M', Grism, narrow bands</td>
</tr>
<tr>
<td>Read out time (typical)</td>
<td>5 sec</td>
</tr>
<tr>
<td>Integration time per frame (typical)</td>
<td>100 s</td>
</tr>
</tbody>
</table>

Table 2. Main characteristics of the NGISS infrared camera

<table>
<thead>
<tr>
<th>Band</th>
<th>(\lambda) ((\mu m))</th>
<th>(R) ((\lambda/\Delta \lambda))</th>
<th>FWHM ((''))</th>
<th>(m_{AB}) mag.</th>
<th>(m_{AB}) /arc(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_d)</td>
<td>2.40</td>
<td>10</td>
<td>0.32</td>
<td>25.3</td>
<td>24.7</td>
</tr>
<tr>
<td>(L_s)</td>
<td>3.40</td>
<td>6</td>
<td>0.38</td>
<td>20.8</td>
<td>20.1</td>
</tr>
<tr>
<td>(L')</td>
<td>3.76</td>
<td>5.8</td>
<td>0.40</td>
<td>21.2</td>
<td>20.8</td>
</tr>
<tr>
<td>M</td>
<td>4.66</td>
<td>19</td>
<td>0.46</td>
<td>19.6</td>
<td>19.4</td>
</tr>
</tbody>
</table>

Table 3. Expected sensitivity of the NGISS (5\(\sigma \), one hour exposure)
Telescope design

The off-axis telescope alternative
(2 to 4 m aperture)

G. Moretto (IPNL, Lyon)

see SPIE Amsterdam, July 2012
SCIENCE CASE COMPLIANCE:

- Exploration of the distant univers and nature of the dark matter
- Discovery of extrasolar planets
- Characterization of stellar populations

Science cases call for

1) the highest possible dynamic range for photometry
2) the highest angular resolution
3) a wide-field imaging
 in optical and thermal infrared

The only concept of telescope that could comply with science cases and capitalize such unique site Dome C performances is

A THREE-MIRROR OFF-AXIS TELESCOPE DESIGN

optimized for low scattered light

low emissivity

wide field of view
Two-Mirror (M2 + M3) Corrector optimized across a FLAT 1x1 Deg² FOV for wide-field surveys.

F/8 System
Plate Scale = 10.31 Arcsec/mm
1x1 Deg² ≈ 0.35m x 0.35m FOV

Off-axis design providing unprecedented low emissivity, high sensitivity and photometric and angular resolution dynamic range.
OPTICAL PERFORMANCE ACROSS FOV

- DL@550nm = CIRCLE DIA 0.111” and DL@1000nm = CIRCLE DIA 0.201” for a 2.5M Telescope;
- RMS DIAMETER ~ 85% Encircled Energy;
- FLAT FOV OF ≈ 0.35m x 0.35m.
POSSIBLE UPGRADE TO A 4M

Two-Mirror (M2 + M3) Corrector optimized across a wide FLAT 1x1 Deg\(^2\) FOV;

F/10 System
Plate Scale = 5.15 Arcsec/mm;

1x1 Deg\(^2\) ≈ 0.7m x 0.7m FOV;
WHY OFF-AXIS in ANTARCTICA?

A high dynamic range design to be performance compatible to the BEST ground astronomical site!

- A telescope design that reduces the sources of light scattering

- Low emissivity

- A tremendous advantage for studies of faint planets near bright stars and faint nebulosity surrounding young stars, where planets may be forming

- Natural-Filled-Aperture: no azimuthal PSF structure, no missing or interpolated wavefront errors. A natural advantages for interferometry and adaptive optics performance!!
The proposed concept of off-axis mirror for a 2.5 m NGISS (Moretto et al., 2012, SPIE vol. 8444) has been submitted to the French ANR - Assessment study (Langlois et al. 2013) – but not selected.

The proposition included the construction of 0.5-0.7m winterized prototype

Partners are:

- **CNRS-INSU**: CRAL (Lyon); Lagrange (Nice)
- **CNRS-IN2P3** : IPNL (Lyon)
- **SAGEM-REOSC**

It will be proposed to H-2020 (HFIO – IfA)

For H-2020, More EU partners
Conclusions

- The new generation telescopes and space missions requires **new survey tools in the NIR**

- The IR **atmospheric conditions in Antarctica are optimal** to carry out in the best conditions a new generation deep NIR survey.

 In the best site, we need the best telescope → **an off-axis concept with GLAO delivering the highest possible photometric dynamic range and angular resolution and wide-field imaging capabilities in the near and thermal infrared**

- **Data pipeline is a huge burden** that requires expertise of specific institutes (such as STScI, IPAC, LSST, CC-IN2P3-Lyon…)

- No single lab or even country can manage and carry out such a project

 International collaboration is therefore mandatory (Europe, Australia, China, USA….)

 We are open to collaborations with other partners
Thank you for your attention!

and thanks to the staff of the Concordia station!