EBEX - E and B Experiment

Kate Raach
University of Minnesota/Twin Cities
Collaboration

APC – Paris
Radek Stompor

Berkeley Lab
Julian Borrill
Ted Kisner

Brown University
Kyle Helson
Andrei Korotkov
Greg Tucker

Cardiff
Peter Ade
Will Grainger
Enzo Pascale

Columbia University
Daniel Chapman
Joy Didier

IAS-Orsay
Julien Grain

IAS-Princeton
Matias Zaldarriaga

Imperial College
Andrew Jaffe

LAL-Orsay
Matthieu Tristram

McGill University
Kevin Bandura
Matt Dobbs
Kevin MacDermid
Graeme Smecher

NIST
Gene Hilton
Hannes Hubmayr
Kent Irwin
Carl Reintsema

SISSA-Trieste
Carlo Baccigalupi
Sam Leach

University of California Berkeley
Adrian Lee
Ben Westbrook

University of Minnesota/ Twin Cities
Asad Aboobaker
Francois Aubin
Chaoyun Bao
Bikramjit Chandra
Shaul Hanany (PI)
Terry Jones
Jeff Klein
Michael Milligan
Kate Raach
Kyle Zilic

Weizmann Institute of Science
Lorne Levinson
Ilan Sagiv
Introduction
Cosmic Microwave Background (CMB)

- **Afterglow Light Pattern 380,000 yrs.**
- **Dark Ages**
- **Development of Galaxies, Planets, etc.**
- **Inflation**
- **Quantum Fluctuations**
- **1st Stars about 400 million yrs.**
- **Big Bang Expansion 13.7 billion years**
- **Dark Energy Accelerated Expansion**

Image: WMAP science team
Polarization

- Scalar perturbations
 - Density perturbations
 - E-modes
- Tensor perturbations
 - Gravity waves
 - E-modes & B-modes
Gravitational Lensing
Power Spectra

\[\frac{\langle (l+1)C_{ll}/2\pi \rangle^2}{\mu K} \]

\(l \)

- \(E \)
- \(B \)
- \(B \) lensing
- Gravity Waves
EBEX in a Nutshell

- A CMB Polarimeter
- Long duration balloon-borne
- Use >1000 bolometric TES
- 3 Frequency bands: 150, 250, 410 GHz
- 8’ resolution at all frequencies
- Polarimetry with continuously rotating half wave plate
- 11 days of data collected in 1/2013 and are being analyzed
Ballooning in Antarctica

- Instantaneous sensitivity
- Frequencies > 250 GHz
- Long duration flights
 - Favorable wind patterns
 - Sparsely populated
 - No sunset
- Challenges
 - Limited bandwidth
 - Observation time
Overview of Instrument
Instrument

7.6 m

Sun Shades

Ground Shield

Solar Panels

Sun Shades

8 Feet

Ground Shield

2725 kg Suspended Science Weight
2.6 kWatt max provided by panels
Instrument

- **Azimuth Motor**
- **Cable Suspension**
- **Inner Frame**
- **Elevation Axis**
- **Outer Frame**
- **Radiation Cooling Panels**
- **Star Camera**
- **Secondary Mirror**
- **Gyros**
- **Receiver**
- **Readout Electronics**
- **Primary Mirror**

Dimensions: **8 Feet**
Bolometer Theory

- Steady state power flow
 \[P = G(T - T_{bath}) \]
- Time to relax
 \[\tau = \frac{C}{G} \]
Transition Edge Sensor Bolometers

\[P_{total} = G(T - T_{bath}) \]

\[= P_{electrical} + P_{optical} \]

\[= \frac{V^2}{R} + P_{optical} \]

\[
\frac{dP_{electrical}}{dT} = \frac{d}{dT}\left(\frac{V^2}{R}\right) = -\frac{dR}{dT}\frac{V^2}{R^2}
\]
Detector Development

- 213 TES bolometers (3 wafers) operated in NA flight (2009)
- For LD:
 - Optimize saturation power
 - $(4, 9, 12)$ pW for $(150, 250, 410)$ GHz

![Graph showing Measured Saturation Power for 347 250 GHz detectors, Target Saturation Power, Average Observed Load.](image)
Detector Development

- 213 TES bolometers (3 wafers) operated in NA flight (2009)
- For LD:
 - Optimize saturation power
 - Develop the tools to tune >1000 TES
 - with limited CPU and I/O
 - All tuning algorithms controlled by boards
 - Flight computer issues one command, receives returns, telemeters returns upon request
 - and *quickly* assess and retune
 - Automated assessment of TES IV
 - SQL-based database to facilitate efficient commands
Detector Development

- 213 TES bolometers (3 wafers) operated in NA flight (2009)

- For LD:
 - Optimize saturation power
 - Develop the tools to tune >1000 TES
 - with limited CPU and I/O
 - and quickly assess and retune
 - Automated assessment of TES IV
 - SQL-based database to facilitate efficient commands
2012 Flight
2012 Flight

- 25.5 days at float (>33.5 km)
- 11 days of data
- 6000 deg2 of constant dec
- Calibration scans on RCW38
Azimuth Motion – Free Rotation

- Full Rotations
 - $0.3 < v < 0.6$ deg/sec
 - Periodic Change of Direction

- 0.4 deg/sec
 - 40-50° p-p

- 0.6 deg/sec
 - 100° p-p
In-Flight Readout Noise

\[\dot{i}_n (pA/\sqrt{Hz}) \]

Frequency (Hz)

Expected Squid Noise

in-flight squid noise (@ 915 kHz)

Total count = 16

SQUID B206

Measured noise / Predicted noise

Statistical frequency
Ground Calibration + 2012 Flight

- Optics, bands as designed
- We are seeing astrophysical signals

![Graph showing counts over time](image1.png)

![Graph showing band relative binned signal to noise](image2.png)
The Future + Summary
The Future - EBEX6K

- 1048 3-band multichroic pixels
- Each pixel is dual polarization
- Sinuous-antenna design (PB2, SPTPol)
- Total of 6048 detectors
- x64 multiplexing
EBEX6K

- 1048 3-band multichroic pixels
- Each pixel is dual polarization
- Sinuous-antenna design (PB2, SPTPol)
- Total of 6048 detectors
- x64 muxing
- 5 µK*arcmin
- 2σ upper limit on r=0.007
 (excludes lensing cleaning, foregrounds, or systematic uncertainties)

Fly in 12/2016 (?)
Summary

• First use of TES bolometers on a balloon platform

• We have >10 days data from 6000 deg2 – Stay tuned

• Planning to probe $r<0.01$ with EBEX6K
Acknowledgements

- NASA
- Canada Space Agency
- National Science Foundation
- Canada Research Chairs Program
- Natural Sciences and Engineering Research Council of Canada
- Canadian Institute for Advanced Research
- Science and Technology Facilities Council (UK)
- Minnesota Supercomputing Institute
- National Energy Research Scientific Computing Center
- Minnesota and Rhode Island Space Grant Consortia
- Funding from Collaborating Institutions
- Sigma Xi
- Private Donations